Proper general decomposition (PGD) for the resolution of Navier-Stokes equations

نویسندگان

  • A. Dumon
  • C. Allery
  • A. Ammar
چکیده

In this work, the PGD method will be considered for solving some problems of fluid mechanics by looking for the solution as a sum of tensor product functions. In the first stage, the equations of Stokes and Burgers will be solved. Then, we will solve the Navier–Stokes problem in the case of the lid-driven cavity for different Reynolds numbers (Re = 100, 1000 and 10,000). Finally, the PGD method will be compared to the standard resolution technique, both in terms of CPU time and accuracy. Ó 2010 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proper Generalized Decomposition method for incompressible Navier-Stokes equations with a spectral discretization

Proper Generalized Decomposition (PGD) is a method which consists in looking for the solution to a problem in a separate form. This approach has been increasingly used over the last few years to solve mathematical problems. The originality of this work consists in the association of PGD with a spectral collocation method to solve transfer equations as well as Navier–Stokes equations. In the fir...

متن کامل

Least-squares Proper Generalised Decompositions for Elliptic Systems

Proper generalised decompositions (PGDs) are a family of methods for efficiently solving high-dimensional PDEs. Convergence of PGD algorithms can be proven provided that the weak form of the PDE can be recast as the minimisation of some energy functional. A large number of elliptic problems, such as the Stokes problem, cannot be guaranteed to converge when employing a Galerkin PGD. Least-square...

متن کامل

Optimization with the time-dependent Navier-Stokes equations as constraints

In this paper, optimal distributed control of the time-dependent Navier-Stokes equations is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. A mixed numerical method involving a quasi-Newton algorithm, a novel calculation of the gradients and an inhomogeneous Navier-Stokes solver, to find the opt...

متن کامل

Model Reduction Based on Proper Generalized Decomposition for the Stochastic Steady Incompressible Navier-Stokes Equations

In this paper we consider a Proper Generalized Decomposition method to solve the steady incompressible Navier–Stokes equations with random Reynolds number and forcing term. The aim of such technique is to compute a low-cost reduced basis approximation of the full Stochastic Galerkin ∗O.P. Le Mâıtre and A. Nouy are partially supported by GNR MoMaS (ANDRA, BRGM, CEA, EdF, IRSN, PACEN-CNRS) and by...

متن کامل

Mixed Finite Element Formulation and Error Estimates Based on Proper Orthogonal Decomposition for the Nonstationary Navier-Stokes Equations

In this paper, proper orthogonal decomposition (POD) is used for model reduction of mixed finite element (MFE) for the nonstationary Navier–Stokes equations and error estimates between a reference solution and the POD solution of reduced MFE formulation are derived. The basic idea of this reduction technique is that ensembles of data are first compiled from transient solutions computed equation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 230  شماره 

صفحات  -

تاریخ انتشار 2011